Instructions
For the following questions answer them individually

Question 1
If $12x^2 - ax + 7 = ax^2 + 9x + 3$ has only one (repeated) solution, then the positive integral solution of a is:

A 2
B 4
C 3
D 5

Answer: C

Explanation:
Given, $12x^2 - ax + 7 = ax^2 + 9x + 3$
$(a - 12)x^2 + (a + 9)x - 4 = 0$
If $ax^2 + bx + c = 0$ has equal roots, then $b^2 = 4ac$
$(a + 9)^2 = 4(a - 12)(-4)$
$a^2 + 18 + 18a = 192 - 16a$
$a^2 + 34a - 111 = 0$
On solving above equation, we get $a = 3$ and $a = -37$.
Here, The positive integral solution will be 3.

Question 2
If $a + \frac{1}{a} = 1$, find the value of $a^3 + \frac{1}{a^3}$

A 2
B -2
C 0
D 1.5

Answer: B

Explanation:
Given, $a + \frac{1}{a} = 1$
Cubing on both sides we get,
$a^3 + \frac{1}{a^3} + 3(a + \frac{1}{a}) = 1$
$a^3 + \frac{1}{a^3} = -2$ (as we know $a + \frac{1}{a} = 1$)
Hence, option B is the correct answer.

Question 3
A root of equation $ax^2 + bx + c = 0$ (where a, b and c are rational numbers) is $5 + 3\sqrt{3}$. What is the value of $(a^2 + b^2 + c^2)$?

A $\frac{35a}{3}$
B $\frac{37a}{3}$
C $\frac{-105a}{11}$

Downloaded from cracku.in
Answer: C

Explanation:
\[ax^2 + bx + c = 0 \] has 5 + 3\sqrt{3} and so the other root is 5 - 3\sqrt{3} since these roots occur in pairs.

Sum of the roots = 5 + 3\sqrt{3} + 5 - 3\sqrt{3} = 10
Product of the roots = (5 + 3\sqrt{3})(5 - 3\sqrt{3}) = -2

Sum of the roots = -b/a
Product of the roots = c/a
-b/a = 10
b = -10a
-c/a = -2

\[c = 2a \]

\[
(a + b + c) = (a^2 + b + c) \\
(\alpha + \beta + 3) = (\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)) = 1 \\
(\alpha^2 + \beta^3 + 3\alpha\beta) = 1 \\
(\alpha^3 + \beta^3) = 2 \\
(\alpha^3\beta^3) = 1 \\
\]

Sum of the roots = -2
Product = 1
Required equation is \[x^2 + 2x + 1 = 0 \]

Question 4
If \(\alpha \) and \(\beta \) are the roots of equation \(x^2 - x + 1 = 0 \), then which equation will have roots \(\alpha^3 \) and \(\beta^3 \)?

A \[x^2 + 2x + 1 = 0 \]
B \[x^2 - 2x - 1 = 0 \]
C \[x^2 + 3x - 1 = 0 \]
D \[x^2 - 3x + 1 = 0 \]

Answer: A

Explanation:
\[x^2 - x + 1 = 0 \]
\[\alpha\beta = 1 \]
\[\alpha + \beta = 1 \]
Cubing on both sides
\[\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = 1 \]
\[\alpha^3 + \beta^3 + 3 = 1 \]
\[\alpha^3 + \beta^3 = 2 \]
\[\alpha^3\beta^3 = 1 \]
Sum of the roots = -2
Product = 1
Required equation is \[x^2 + 2x + 1 = 0 \]

Question 5
If \(a(x + y) = b(x - y) = 2ab \), then the value of \(2(x^2 + y^2) \) is

A \[\frac{-105}{13} \]

Answer: C

Explanation:
\[x^2 + y^2 = \]
Answer: D

Explanation:
Given : \(a(x + y) = b(x - y) = 2ab \)

=> \(a(x + y) = 2ab \)

=> \((x + y) = 2b \)

Squaring both sides,

=> \((x + y) = (2b)^2 \)

=> \(x^2 + y^2 + 2xy = 4b^2 \)\[i\]

Similarly, \((x - y) = 2a \)

Squaring both sides,

=> \((x - y) = (2a)^2 \)

=> \(x^2 + y^2 - 2xy = 4a^2 \)\[ii\]

Adding equations \(i\) and \(ii\), we get :

=> \(2x^2 + 2y^2 = 4a^2 + 4b^2 \)

=> \(2(x^2 + y^2) = 4(a^2 + b^2) \)

=> Ans - (D)

Question 6
If \((x - 2)\) and \((x + 3)\) are the factors of the equation \(x^2 + k_1x + k_2 = 0\), then what are the values of \(k_1\) and \(k_2\) ?

A \(k_1 = 6, k_2 = -1 \)

B \(k_1 = 1, k_2 = -6 \)

C \(k_1 = 1, k_2 = 6 \)

D \(k_1 = -6, k_2 = 1 \)

Answer: B

Explanation:
Equation : \(f(x) = x^2 + k_1x + k_2 = 0 \)

If \((x - 2)\) and \((x + 3)\) are factors of above equation, then \(x = 2, -3\) will satisfy above equation.

=> \(f(2) = (2)^2 + k_1(2) + k_2 = 0 \)

=> \(2k_1 + k_2 = -4 \)\[i\]

Similarly, \(f(-3) = (-3)^2 + k_1(-3) + k_2 = 0 \)

=> \(-3k_1 + k_2 = -9 \)\[ii\]

Subtracting equation \(ii\) from \(i\), we get :

=> \(5k_1 = -4 + 9 = 5 \)
Question 7

Two students appeared for an examination. One of them secured 9 marks more than the other and his marks were 56% of the sum of their marks. The marks obtained by them are

A 40 and 31
B 72 and 63
C 42 and 33
D 68 and 59

Answer: C

Explanation:
Let marks scored by 1st student = \(x \)

=> Marks scored by another student = \(x + 9 \)

According to question, => \(x + 9 = \frac{56}{100} \times (x + x + 9) \)

=> \(x + 9 = \frac{14}{25} \times (2x + 9) \)

=> \(25x + 225 = 28x + 126 \)

=> \(3x = 225 - 126 \Rightarrow 99 \)

=> \(x = \frac{99}{3} = 33 \)

∴ Marks scored by other student = 33 + 9 = 42

=> Ans - (C)

Question 8

If the average of \(x \) and \(\frac{1}{x} \) be 1, then the value of \(x^{10} + \frac{1}{x^{10}} \) is

A -2
B 2
C 0
D 1

Answer: B

Explanation:
here it is given that

\(x + \frac{1}{x} = 2 \)

and it is possible only when \(x = 1 \)

and hence we will put \(x = 1 \) in \(x^{10} + \frac{1}{x^{10}} = 1 + 1 = 2 \)
Question 9

If \(x = (0.08)^2 \), \(y = \frac{1}{(0.08)^2} \) and \(z = (1 - 0.08)^2 - 1 \), then out of the following, the true relation is

A y < x and x = z
B x < y and x = z
C y < z < x
D z < x < y

Answer: D

Explanation:
Given that \(x = (0.08)^2 \), \(y = \frac{1}{(0.08)^2} \) and \(z = (1 - 0.08)^2 - 1 \)
\(x = (0.08)^2 = 0.0064 \)
\(y = \frac{1}{(0.08)^2} = 12.5 \times 12.5 = 156.25 \)
\(z = (1 - 0.08)^2 - 1 = a \) negative number
hence we can say that
\(z < x < y \)

Question 10

\(\frac{p}{a+b+c} = 1 \) and \(\frac{a}{p+q+r} = 0 \) where \(p,q,r \) and \(a,b,c \) are non-zero then the value of \(\frac{p^2}{a^2} + \frac{q^3}{b^2} + \frac{r^2}{c^2} \) is

A -1
B 0
C 1
D 2

Answer: C

Explanation:
Given \(\frac{p}{a+b+c} = 1 \)
Squaring on both sides gives, \(\left(\frac{p}{a+b+c} \right)^2 = 1^2 \)
\(\frac{p^2}{a+b+c} = \frac{a}{p+q+r} = 0 \)
Also given that \(p + q + r = 0 \)
Solving this, we get \(aq + bpr + cpq = 0 \)
Divide this with \(abc \) on both sides, we get \(\frac{aq}{abc} + \frac{bpr}{abc} + \frac{cpq}{abc} = 0 \)
i.e. \(\frac{aq}{bc} + \frac{bpr}{ac} + \frac{cpq}{ab} = 0 \) . Substituting this in \(\text{equ(1)} \)
We get, \(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} = 1 \)

Question 11

If \(a^2 - 4a - 1 = 0 \), then value of \(a^2 + \frac{1}{a^2} + 3a - \frac{3}{a} \) is

A 25
B 26
Answer: B

Explanation:
it is given that \(a^2 + 4a - 1 = 0 \)
from this we can say \(a - \frac{1}{a} = 4 \)
we need to find \(a^2 + a^2 + 3a - \frac{3}{a} \)
\[
\begin{align*}
a^2 + a^2 &= (a - \frac{1}{a})^2 + 2 \\
a^2 + a^2 + 3a &= (a - \frac{1}{a})^2 + 2 + (3 \times 4) \\
&= 30
\end{align*}
\]

Question 12
If \(\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1 \) the the value of \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \)

A 1
B 3
C 4
D 0

Answer: C

Explanation:
Expression : \(\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1 \)
Let’s put each term equal to each other
\[
\begin{align*}
=> 3 \frac{a}{1-a} &= 1 \\
=> 3a &= 1 - a \\
=> a &= \frac{1}{4} = b = c
\end{align*}
\]
To find : \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \)
\[
= \frac{1}{1-\frac{1}{4}} + \frac{1}{1-\frac{1}{4}} + \frac{1}{1-\frac{1}{4}} \\
= 3 \times \frac{4}{3} = 4
\]

Free Videos for CAT

Question 13
If \(7 + 4x > 3 + 3x \) and \(3x - 2 < 5 - x \), then \(x \) can take which of the following values?

A 2
B 3
C 1
D -5

Answer: C
Explanation:
Expression 1: $7 + 4x > 3 + 3x$
$\Rightarrow 4x - 3x > 3 - 7$
$\Rightarrow x > -4$ \hspace{1cm} (i)

Expression 2: $3x - 2 < 5 - x$
$\Rightarrow 3x + x < 5 + 2$
$\Rightarrow 4x < 7$
$\Rightarrow x < \frac{7}{4}$ \hspace{1cm} (ii)

Combining inequalities (i) and (ii), we get: $-4 < x < \frac{7}{4}$

Thus, x can take values = -3, -2, -1, 0, 1
\Rightarrow Ans - (C)

Question 14
Product of three consecutive odd numbers is 1287. What is the largest of the three numbers?

A 9
B 11
C 13
D 17

Answer: C

Explanation:
Let the three consecutive odd numbers be $(x-2), (x), (x+2)$
\Rightarrow Product = $(x-2)(x)(x+2) = 1287$
$\Rightarrow x(x^2 - 4) = 11 \times 117$
$\Rightarrow x = 11$ and $x^2 - 4 = 117$
\therefore Largest of the three numbers = $11 + 2 = 13$
\Rightarrow Ans - (C)

Question 15
If $x + y + z = 0$, then what is the value of $\frac{3y^2 + x^2 + z^2}{2y^2 - xz}$?

A 2
B 1
C $\frac{3}{2}$
D $\frac{5}{3}$

Answer: A

Explanation:
Solution 1:
As the answer is independent of variables and so we can assume values for x, y and z and solve
let $x=1, y=-1, z=0$ therefore $x+y+z=1-1+0=0$
We know \(x+y+z=0\)
we can see that for \(k=2\)
we get \(x+z+y=0\)
Therefore value of \(k=2\)
Data Interpretation for CAT Questions (download pdf)

Logical Reasoning for CAT Questions (download pdf)

Quantitative Aptitude for CAT Questions (download pdf)

Know the CAT Percentile Required for IIM Calls

Join MBA Telegram Group

Enroll for CAT/MBA courses

Free CAT Exam Preparation App